números de Fibonacci - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

números de Fibonacci - ترجمة إلى الروسية

SEQUÊNCIA INFINITA DE NÚMEROS INTEIROS
Números de Fibonacci; Seqüência de Fibonacci; Série de Fibonacci; Número de Fibonacci; Sucessão de Fibonacci

números de Fibonacci         
- (матем.) числа Фибоначчи
números de Fibonacci         
мат. числа Фибоначчи
série de Fibonacci         
мат. ряд Фибоначчи

تعريف

ДЕ-ЮРЕ
[дэ, рэ], нареч., юр.
Юридически, формально (в отличие от де-факто).

ويكيبيديا

Sequência de Fibonacci

Na matemática, a sucessão de Fibonacci (ou sequência de Fibonacci), é uma sequência de números inteiros, começando normalmente por 0 e 1, na qual cada termo subsequente corresponde à soma dos dois anteriores. A sequência recebeu o nome do matemático italiano Leonardo de Pisa ou Leonardo Fibonacci, mais conhecido por apenas Fibonacci, que descreveu, no ano de 1202, o crescimento de uma população de coelhos, a partir desta. Esta sequência já era, no entanto, conhecida na antiguidade.

Os números de Fibonacci são, portanto, os números que compõem a seguinte sequência (A000045 na OEIS):

0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... .
É importante destacar que a sequência de Fibonacci é infinita. Portanto, o ideal é que você defina um valor que tenha como objetivo e, ao alcançar esse objetivo, você decida uma nova meta para alcançar.

Em termos matemáticos, a sequência é definida recursivamente pela fórmula abaixo, sendo o primeiro termo F1= 1:

e valores iniciais

A sequência de Fibonacci tem aplicações na análise de mercados financeiros, na ciência da computação e na teoria dos jogos. Também aparece em configurações biológicas, como, por exemplo, na disposição dos galhos das árvores ou das folhas em uma haste, no arranjo do cone da alcachofra, do abacaxi, ou no desenrolar da samambaia.